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Absact

We show that a strong laser acting on an electron in a quantum double well

which is under the influence of a strong static field, will cause (for special values

of the parameters) emission of intense low frequency radiation and can either

completely delocalize or completely localize the electron.
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The response of an electron in a double well (or that of a two level system

representing a double well) to a strong laser has been the subject of several recent

investigations1 0 . The parameters most useful for describing the observations are,

e0 = 2ýL12Eo/, 2e/hco and the frequency:

CIO = (2&lio,) Jo(eo) (1)

Here 2E is the energy gap between the lowest two levels, w is the laser frequency,

E0 is the electric field of the laser, L12 is the transition dipole between these levels

and Jo is the Bessel function of order zero11 . The values of (ow,E 0} for which

0= 0 (2)

are cailed 6"7 points of accidental degeneracy (AD points). According to (1) they

satisfy

eo = 2 ýL12 Eo/ho) = zi(O), (3)

where zi(O) denotes the i-th zero of J0 . If

2Aho• < 1, (4)

the behavior of the system when {o,E0) is at or near an AD point is very

interesting. As is well known, if at a given moment the electron is localized in

one of the wells, it will oscillate between the wells as the time evolves. A laser

with the parameters chosen at an AD point [i.e. satisfying Eq.(3)] can stop this

oscillation and keep the electron in one of the wells 1 ,2. Moreover, the system can

emit (or absorb) intense even-harmonics 6,7 [i.e. the induced dipole ý±(t) has intense

Fourier components at the frequency 2nco, where n is an integer]. The presence of

this emission is remarkable because (for a symmetric well or, equivalently, for a

two level system with zero static dipole moment) it is symmetry forbidden to all

orders in perturbation theory in E0. If (co,E 0 } is chosen near an AD point the

Fourier transform of ýL(t) has no even harmonics and has a large peak at the low

frequency Q0. The existence of this peak is called 6 7 low frequency generation

(LFG). This frequency is small, and can be continuously tuned to smaller values,
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by changing o or E0 to get them closer to an AD point. When the AD point is

reached no becomes zero and the LFG peak in g(Q2) disappears to become a large

static dipole. Some of the work on this system assumed that the electron is

initially localized. Such a state is very difficult to prepare. However, numerical

calculations 6"7 show that the same behavior is obtained if the system starts in the

ground state and is excited with a semi-infinite Gaussian pulse with a well

chosen rise time and {co,E 0} at or near an AD point.

These phenomena were documented by analysis of two level models 1,2, 9,10

and by numerical calculations with double wells 1 ,2,6,7 . They have also been

observed in numerical calculations on systems that mimic an AlAs-GaAs-AlAs

double quantum well16 7; the analysis of these results9 indicates that, for the

parameter range of interest here, the behaviour of the quantum double wells

provided by an A1GaAs superlattice can be represented rather accurately by a two

level model.

In this article we investigate how these phenomena are modified when the

system is interacting with a static electric field of intensity EV. The presence of

this field introduces a new parameter

e,= 2gtl 2Exo) (5)

The analog of the AD points ( we call them generalized AD points (GAD)) are the

points {Es,o),Eo } for which

e= n, (6)

and

e= zi(n). (7)

Here n is an integer ( positive or negative) and zi(n) the i-th root of the Bessel

function Jn" For parameter values near or at a GAD point the dominant

contribution to the dipole induced by the joint action of the static field and the laser

is:
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9('r) = 912 g.i,$) -=(e,+ n)2/W"2 + 2/ W'2 Cos ftWn} (8)

Here T = t wo, t is time,

n= (2EIho)Jn(e0) (9)

and

Wn= [n2 + (n+es)2JI/ 2  (10).

The arguments leading to equation (8) suggest that this is a good approximation

for g(t() only if 2e/lha < 1. The above equations agree well with the induced dipole

calculated numerically only for sufficiently large values of eo; the agreement at

lower values of e0 becomes better and better as 2&0w is made smaller.

Note that in the absence of the bias we have e. = 0. The condition (6) can

then be satisfied only if n = 0, which means that Wn = n =Qo; the condition 7

becomes equivalent to Eq. (3), as it should. When n is zero, Eq. (8) is valid for

small nonvanishing values of es and generalizes results obtained in ref. 9.

Before we proceed we comment on the physical restrictions imposed by

these conditions and the systems which can satisfy them. The condition es I

together with ho > 2E implies that the electron interaction with the static field

must be larger that the gap 2e between the two levels. This condition cannot be

satisfied by atoms or molecules but are satisfied in quantum wells because the

barrier is low (the electron solid interaction is weak) and the system is large (the

electron kinetic energy can be low); perhaps a carefully chosen proton tunneling

system might also satisfy it. The condition ho > 2e is also troublesome. The

system can be treated as a two level system only if ho << 63-E1 . These two

conditions require that E3-FE2 >> e2 -El, which is easily satisfied for a quantum well

or a tunneling system, but not for an atom or a molecule.

The results summarized above are derived by analysing the equation of

motion for the induced dipole. We show that g(,r) is the sum of the result shown in

Eq. (8) and a term (2d/ho,) 2c(T), where c(t) is a functional of p(r)). We then argue
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that, if the parameters are sufficiently close to a GAD point and 2elho < 1 than

(2E/hCO) 2 o(t) is small and Eq. (8) is a good approximation.

What follows is a brief outline of the reasoning that lead us to Eq. (8). We

use the model Hamiltonian:

H = e I 2X21 -I 1)(1 )} - [I 1X21-12X1I }j±12 [Es+Eocos(wot). (11)

Here 11) and 12) are the ground and first excited states of the electron in the

symmetric double well in the absence of the laser and of the bias, and 2E = F-2 -

The zero of energy is half-way between the ground and the excited state.

The induced dipole is:

A(t) = •12 (V,t I ( 1X2 -i 2)(11 ) I V,t), (12)

where 14V,t) satisfies the time dependent Schr5dinger equation with the

Hamiltonian (11). By using standard methods we derive for 1.(t) the equation of

motion:
dg(-r)/d•-T-(2a/hO))2 •, • Jm(e0)Jk(eo)

m =-k k=--

Reff d%1 exp(i(m+es)a] exp(i(k+e )ti] g(r1) (13)

Eq. (13) is used to search for points in the parameter space where the

induced dipole may have unusual behavior. If we replace in the rhs 4(t) with 412 ,

we can perform the integral and find that the terms corresponding to m = k = - es

lead to secular terms (i.e. they grow indefinitely with r) which grow faster with

time than the other terms. This suggests that when we do not use perturbation

theory the terms corresponding to m = k = - e. may be larger than the rest 9 .

To find the contribution to jL(t) from the terms ni = k = - e. we must calculate

them nonperturbatively. This is done as follows. We assume that e. = - n where

n is an integer. Then we write the rhs of Eq. (13) as the term corresponding to k =

n plus all the other terms which are (2&hno) 2 c(-); these include the terms where

m # k and the terms where m = k but m * n. This separation allows us to write

Eq. (13) as:
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S= - Rn2{(f: dt 1 cos[(n+e5 )(X-v'r)]p(t 1 )I - (2E/hca) 2 c(T). (14)

We can now use the Laplace transform method to "solve" this equation. We

use the initial condition:

9(t=0) = 912, (15)

because in a biased system in which 9•1 2 E. >> e the dipole moment in the ground

state (in the absence of the laser) is very close to 412 = e(1 I x 1 2). Here e is the

electron charge, x is the electron position operator and 1) and 12) are the

eigenstates of the unbiased system.

Laplace transforming (14), using (15), solving for the Laplace transform of

g±, and then inverse-transforming gives:

g(T) = g12 gjr) - (2eAxo)2 fo dit Y(•Y) c'-r 1] (16)

This equation is exact, but it does not provide a solution for our problem since c(r)

depends of gL. The result is however useful because the last term at the right hand

side is negligible when (2i/hco) is small; thus (16) leads to (8). The argument

suggesting that the last term is negligible is patterned after a procedure presented

in Ref. 9. But since it is too elaborate to be presented here we prefer to test this

suggestion numerically.

Eq. (8) predicts that if e. - n than 4(Q) is dominated by two modes, a zero

frequency mode (ZFM) and a low frequency mode (LFM); furthermore, the

equations gives formulae for the amplitudes of the modes and the low frequency

Wn. To test these results we have calculated g(t) numerically, found its Fourier

transform ý(M) and plotted I •(Q)I as a function of Q. These plots have peaks

whose heights give the amplitude of the Fourier components of ji. We find that as

long as 26cho << 1 and e. - n, the ZFM and the LFM modes have the highest

amplitudes, in qualitative agreement with Eq. (8). For a quantitative test we plot

in Fig. 1 the amplitude of the ZFM (denoted g(O)), the amplitude of the LFM

S• i , z I II I | 7



(denoted g.(WI) and the lowest frequency W1 , as a function of eo. The numerical

calculations were made for es = - 1.00 and 2E/hn = 0.129. For these values Eq. (8)

predicts that O(0) = 0, p.(Wj) = 1 and W1 = (2•/hwO)J 1 (eo). We plot these predictions

along with the numerical results. The predictions are reasonably accurate if e0 >

1, and excellent for e0 > 2. The Eq.(9), giving the LFG emission frequency, agrees

extremeiy well with the value obtained numerically, except when e0 is very small.

Eq. (9) predicts that W, --* 0 if eo -+ 0, while the numerical results lead to a finite

value.

As the intensity of the laser field is increased ýt(0) becomes smaller while

A.(WI) increases. The sum of these two components is close to the maximum

possible value 9t12 of the induced dipole. This means that the contributions from

the other Fourier components are substantially smaller, as predicted by the

theory. As e0 approaches 1 the oscillating part dominates the dipole. This meqns

that practically all the charge density is set in motion by the laser. This coherent

motion of the charge density leads to intense LFG. The frequency W, varies with

e0 (but it is always much smaller than the typical frequencies appearing in the

Hamiltonian) and approaches zero as e0 gets close to the first zero of J, (which is a

GAD point). When W, = 0 the LFM becomes static. An experiment that monitors

only the static part of g(t) will notice that the static dipole disappears as e0 exceeds

one and reappears suddenly when e0 = z1(1) = 3.84.

Note that the analytical results disagree with the numerical ones if e0 < 1;

for this values of eo the terms neglected in Eqs. (14,16) become important. The

numerical calculations show that the values of e0 below which Eq. (8) is ' roneous

become smaller as 20/rio is diminished.

The theory makes predictions also for the case when e. is close to an

integer. In Fig. 2 we compare the theory with the numerical results for e,= - 0.95.

The agreement is rather good for 1<e 0 and excellent for 2<e 0 . As the laser
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intensity is increased the amplitude g(0) of the ZFM is diminished but it never

becomes zero (as it does when e,=-1). When e0 approaches the first zero of J 1, 4(0)

goes up to a maximum. At this point the electron is completely localized.

We have also studied the case es= - 1.05. The equation (8) predicts that the

results should be identical to those obtained for e,- - 0.95, but we find this to be

only approximately true. Differences between the calculation for e,= - 1.05 and

that for e,= - 0.95 are small but not zero; they become negligible when e0 > 2.5.

The analytical results are valid only if es is close or equal to an integer

Numerical tests show that they fail rather badly in the case when e,= - 1.5.

In the case of an unbiased well, studied in previous work 1"10, the ability of

the laser to prepare a state having the largest possible static moment (which

means that the electron is located in one well) is rather startling. The double well

studied here interacts with a very large static field (i.e. p.12 Es>2e). Because of this

the system has, in the absence of the laser, a very large static dipole and the

electron is localized. In this case the surprise is that, in spite of an extremely

strong bias, the laser manages to make the static component of the dipole very

small, by forcing most of the charge density to slosh coherently back and forth

between the wells.
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Figure Captions

Fig. 1. The zero frequency and the low frequency components of the

induced dipole moment (g(O) and ý(W1 )) and the lowest frequency W1, as functions

of e0. The continuous lines are the numerical results. The values of W1, •O) and

g(Qlt)) calculated u-ir 0 Eq. 8 are shown as dots, squares and x's, respectively. 2F-

12.9 cm 1, W = ±00 cm1 , and e. = 1.0.

Fig. 2. Same as Fig. 1 except that e. = 0.95.
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